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Stochastic model for a vortex depinning in random media

Byungnam Kahng, Kwangho Park, and Jinhee Park
Department of Physics and Center for Advanced Materials and Devices, Kon-Kuk University, Seoul 143-701, Korea

~Received 8 July 1997; revised manuscript received 2 December 1997!

We present a self-organized stochastic model for the dynamics of a single flux line in random media. The
dynamics of the flux line in the longitudinal and the transverse direction to average velocity direction are
coupled to each other. The roughness exponents of the flux line are measured for each direction, which are
a i'0.63 for the longitudinal anda''0.5 for the transverse direction, respectively. The dynamic exponents
are obtained asz'1 for both directions. We also examine the avalanche size distribution, which exhibits a
power-law behavior with the exponent consistent with the one for the Sneppen model in 111 dimensions.
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PACS number~s!: 05.40.1j, 68.35.Fx, 64.60.Ht
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In the past few years, there has been an explosion
studies in the field of dynamics of fluctuating interfaces d
to theoretical interests in the classification of universality
stochastic models and also due to applications to var
physical phenomena such as crystal growth, vapor dep
tion, electroplating, biological growth, etc. A number of di
crete models and continuum equations for interface dyn
ics have been introduced and studied@1–3#. An interesting
feature of nonequilibrium interface dynamics is the no
trivial dynamic scaling behavior@4# of the interface fluctua-
tion width, i.e.,

W~L,t !5K 1

Ld8(x
@h~x,t !2h̄~ t !#2L 1/2

;La f ~ t/Lz!, ~1!

whereh(x,t) is the height of sitex on the substrate at timet.
h̄, L, andd8 denote the mean height, system size, and s
strate dimension, respectively. The angular brackets stan
statistical average. The scaling function behaves asf (x)
→const forx@1, andf (x);xb for x!1 with z5a/b. The
exponentsa, b, andz are called the roughness, the grow
and the dynamic exponents, respectively.

Recently the problem of the pinning-depinning~PD! tran-
sition of interfaces in random media has also attracted in
est in association with the dynamics of fluctuating interfa
in random media. Examples include the dynamics of dom
boundaries of random Ising spin systems after be
quenched below the critical temperature@5#, wetting immis-
cible displacement of one fluid by another in a porous m
dium @6,7#, pinning flux lines in type-II superconductor
@8,9#, fluid imbibition in paper@10#, etc. In the problem of
the PD transition, the interface is pinned when external d
ing forceF is weaker than pinning strength induced by ra
dom media, while it moves with a certain velocityv when
the forceF is greater than the pinning strength. Thus the
exists a threshold of external applied forceFc across which
the PD transition occurs. The role of the order paramete
played by the mean velocity,v5^(x]h(x,t)/]t&/Ld8. Ac-
cordingly, the velocity is zero forF,Fc , and increases fo
F.Fc as v;(F2Fc)

u, where the exponentu is called the
velocity exponent.
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The continuum equation for the dynamics of interfaces
random media may be written simply as@7#

]h~x,t !

]t
5n¹2h1F1h~x,h!, ~2!

whereh(x,t) is the height of the interface at positionx at
time t. The first term on the right-hand side is from th
smoothening effect of surface tension, the second term
uniform driving force, and the third a random force wi
short range correlations, satisfyinĝh(x,h)&50 and
^h(x,h)h(x8,h8)&52Dd(x2x8)d(h2h8) with noise
strength D. The above equation, called the quench
Edwards-Wilkinson~QEW! equation, would be relevant to
the dynamics of the domain wall in random magnetic s
tems. More generally, recently a new continuum equat
was introduced @11#, which includes a nonlinear term
(l/2)(¹h)2 induced from the anisotropic property of th
pinning strength. Thus the equation is replaced by

]h~x,t !

]t
5n¹2h1

l

2
~¹h!21F1h~x,h!, ~3!

which is called the quenched Kardar-Parisi-Zhang~QKPZ!
equation. The QKPZ equation leads to a different univers
ity class from the QEW equation. Recently several stocha
models in the QKPZ universality class have been introdu
@10,12#. From the models, it has been naturally conclud
that the surface at the threshold of the PD transitionFc can
be described by the directed percolation~DP! cluster spanned
perpendicularly to the surface growth direction in 111 di-
mensions. The roughness exponenta of the interface is
given as the ratio of the correlation length exponentsn' and
n i of the DP cluster in the transverse and the longitudi
direction that isa5n' /n i'0.63.

The dynamics of a single flux line in a type-II superco
ductor with random impurities can also be understood i
similar manner used in the dynamics of surface growth. T
main difference between them lies in that the flux line is
one-dimensional chain embedded in three dimensions ra
than in two dimensions. Thus the roughness of the flux l
is quantified in two different directions, the longitudinal an
the transverse to average velocity direction. Recently
3814 © 1998 The American Physical Society
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57 3815STOCHASTIC MODEL FOR A VORTEX DEPINNING IN . . .
continuum equations for the flux line dynamics in each
rections were derived by Ertas and Kardar@8,9#, which are
coupled to each other and look very complicated in gene
They obtained the roughness and the dynamic exponent
various cases of the coupled equations; however, there
remain several cases where the roughness and dynami
ponents are not determined yet. In this paper, we will int
duce a simple self-organized stochastic model, which m
be relevant to the dynamics of the flux line. The numeri
results we obtain from the stochastic model might make
for the list of the roughness and the dynamic exponent
Ref. @9#.

The stochastic model we introduce in this paper is defi
as follows. First, we consider a body centered cubic~bcc!
lattice, in which an elastic string runs along thex direction as
shown in Fig. 1. The discrete version of the elastic string
composed ofL-massless beads~black dots!, which locate at
nearest neighboring sites of one another and are conne
through strings. The zigzag-type configuration as shown
Fig. 1 is regarded as an initial flat configuration. The to
length of the string is equal toA3aL/2, wherea is the unit
lattice constant of the bcc lattice andL is the total number of
beads in the system. The elastic string does not run backw
to thex direction, so that (y,z) positions of the bead for eac
x are specified by single values. Each bead is allowed
update only in either the positivey or positivez direction
according to the following rule. First, two random numbe
are assigned on each bead, one of which is for the positivy
direction and the other is for the positivez direction. The
random numbers for they direction are uniformly distributed
between@0,p# wherep<1 and the ones for thez direction
are in @0,1#. Next, a minimum random number is select
among the 2L random numbers of the entire system, throu
which we determine the position and the direction of bead
move. Then the bead having the minimum random numbe
updated by shifting its position by the lattice constanta
along the direction chosen. Next, the avalanche proces
updating may occur on neighboring beads when the sep
tion between the nearest neighboring beads along the s
becomes larger thanA3a/2. In that case, the nearest neig
boring bead is also shifted by a lattice constant along
direction already selected. The avalanche rule is then app

FIG. 1. The initial flat configuration of the discrete version
elastic string. Each bead has two-component noises represe
random pinning forces in they andz directions.
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successively to next neighboring beads to conserve the s
ration between nearest neighboring beads. Finally, the
dom numbers at the newly updated sites are replaced by
ones in bothy and z directions. Thus it is possible that
random number at a certain site in one direction can be
placed without changing its position when the position in t
other direction is updated. The dynamic rule we used is si
lar to the Sneppen dynamic rule@13# but the updating occurs
in two different directions. Accordingly, we call our mode
the vector Sneppen model hereafter.

It would be interesting to derive the continuum equati
for the vector Sneppen model. The derivation of the co
tinuum equation is based on the coarse-grained descrip
rather than through the stochastic approach using the ma
equation. In fact, our derivation follows that used by Ert
and Kardar in Ref.@9# but the external driving force is no
given via external current. The equation of motion is o
tained by balancing the conservative and dynamical for
affected on the flux line. The conservative force consists
the elastic force, driving force, and random force due to i
purities. The dynamical force is proportional to the local v
locity of the flux line in the normal direction. Let the positio
of flux line at substrate positionx and time t in three-
dimensional space be denoted byRW (x,t). In order to specify
the normal velocity for the flux line, one first defines loc
tangent vector,

t̂5
1

Ag
]xRW , ~4!

whereg is the metric. Then one defines a projection ope
tor,

Pi j [d i j 2 t̂ i t̂ j . ~5!

Using the above two quantities, one can write the velocity
the normal direction as

vW n5P•] tRW 5] tRW 2~] tRW • t̂ ! t̂ , ~6!

whereP5$Pi j % is the projector operator. The conservati
force acting in the normal direction is given as

FW n5P•$]x
2RW 1FW 1 fW%, ~7!

where the first term on the right-hand side is from the ela
force of the flux line, the second term is the uniform drivin
force, and the third is a random force with short range c
relation. Then the equation of motion can be obtained
balancing Eq.~6! and Eq.~7! as

hP•] tRW 5FW n , ~8!

whereh is viscosity. Next,$x̂,êi,ê'% is taken as the basi
vector of the coordinate system, whereêi is selected as the
direction of average velocity that is parallel to applyin
force. Then the flux line is represented asRW (x,t)5xx̂

1r i(x,t)êi1r'(x,t)ê' , and the metric is given asg51
1(]xr i)

21(]xr')2. Obviously FW 5Fêi , and the random

ing
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eforce is represented asfW5 f xx̂1 f iêi1 f'ê' . Then the equa-
tions of motion for the flux line inr i and r' directions be-
come

h] tr i

A11si
2

5]x
2r i1

l1i

2
si

21
l1'

2
s'

21F1 f̃ i , ~9!

h] tr'

A11s'
2

5]x
2r'1 f̃ ' , ~10!

wheresi[]xr i , s'[]xr' , and the random forces are

f̃ i5
~ f i2si f x!

A11si
2

, ~11!

f̃ '5
~ f'2s' f x!

A11s'
2

. ~12!

The remaining parameters are given byl1i52F and l1'

52F, which are nonzero forFÞ0. Note that Eq.~10! is
invariant underr'→2r' . According to the presence of th
nonlinear term, (l1i /2)si

2 in Eq. ~9!, the dynamics of the
longitudinal direction is expected to belong to the quench
KPZ universality class, while for the transverse direction, t
dynamics would be in a new universality class. This is b
cause Eq.~10! does not include external force, but is affect
by the longitudinal dynamics through the random noise,
that the quenched Edwards-Wilkinson universality is e
cluded. Equations~9! and~10! would be a special case of th
equations presented by Ertas and Kardar in Ref.@9#,

] tr a5mabFb1kab]xr b1Kab]x
2r b

3 1
2 la,bg]xr b]xr g1 f a , ~13!

wherea andb denote eitheri or'.
In order to obtain the roughness exponents for each di

tion, we consider the spatial correlation functionsCi andC'

after saturation,

Ci~x,t !5K 1

L(
x1

@r i~x1x1 ,t !2r i~x1 ,t !#2L 1/2

,

C'~x,t !5K 1

L(
x1

@r'~x1x1 ,t !2r'~x1 ,t !#2L 1/2

, ~14!

which behave asCi(x);xa i andC'(x);xa'. Next, in order
to obtain the growth exponents, we consider the tempo
correlation functionsC̃i and C̃' ,

C̃i~ t22t1!5K 1

L(
x

@r i~x,t2!2 r̄ i~ t2!2r i~x,t1!

1 r̄ i~ t1!#2L 1/2

,

d
e
-

o
-

c-

al

C̃'~ t22t1!5K 1

L(
x

~r'~x,t2!2 r̄'~ t2!2r'~x,t1!

1 r̄'~ t1!!2L 1/2

, ~15!

where t1 is taken as a time in steady state. The correlat
functions behave asC̃i;(t22t1)b i andC̃';(t22t1)b'. Nu-
merical simulations were performed for the cases ofp51
andp51/2.

For p51, the roughness exponents are measured aa i
'0.63 anda''0.50 as shown in Fig. 2. The growth expo
nents are measured asb i'0.64 andb''0.53 as shown in
Fig. 3. From the numerical results, the dynamic expone
are obtained aszi'0.99 andz''0.95, which suggest tha
the true dynamic exponents arezi5z'51. This result may
be attributed to the fact that the coherent effect propag
along the string and the chemical distance between any

FIG. 2. Plot ofCi (C') vs x for p51 in double logarithmic
scales. The simulations were performed for system sizeL52048.
The lines obtained from the least square fits have the slopes
~top! and 1.00.

FIG. 3. Plot ofC̃i (C̃') vs time forp51 in double logarithmic
scales. The simulations were performed for system sizeL52048.
The lines obtained from the least square fits have the slopes
~top! and 1.05.
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57 3817STOCHASTIC MODEL FOR A VORTEX DEPINNING IN . . .
points on the string remains invariant under the restric
solid-on-solid condition@14#. Next, for p51/2, the spatial
correlation functions for each direction are less distinct
than the case ofp51 as shown in Fig. 4. The roughne
exponents were obtained asa i'0.60 anda''0.54. For the
growth exponents, it is likely that the time correlation fun
tion C̃i in the longitudinal direction exhibits a power-la
behavior against time withb i'0.64. However, for the trans
verse direction, the data do not exhibit a simple power-l
type behavior, rather they show a crossover behavior fr
b''0.50 tob',0.50 in Fig. 5. One may see the crossov
as a long transient behavior. From the numerical results,
suggested that the roughness exponents area i50.63 and
a'50.5, and the dynamic exponents arezi5z'51 for the
values of 0,p<1. Note that whenp50, the dynamics in
the transverse direction does not occur, and the mode
duces to the ordinary Sneppen model. Accordingly, the
merical results indicate that the roughness and dynamic
ponents are independent ofp. This point can also be

FIG. 4. Plot ofCi (C') vs x for p51/2 in double logarithmic
scales. The simulations were performed for system sizeL52048.
The lines obtained from the least square fits have the slopes
~top! and 1.08.

FIG. 5. Plot ofC̃i (C̃') vs time for p51/2 in double logarith-
mic scales. The simulations were performed for system sizL
52048. The lines have the slopes 1.28~top! and 1.00.
d
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confirmed by the fact that Eqs.~9! and ~10! do not include
any factor depending on the angle between average velo
direction and they direction. The numerical values of th
roughness and dynamic exponents for the longitudinal dir
tion a i'0.63 andzi'1 suggest that the dynamics belongs
the directed percolation depinning universality class~the
QKPZ universality class! in 111 directions. On the othe
hand, for the transverse direction, the numerical valuesa'

'0.5 andz''1 leads to a new universality.
Next, let us consider the properties of self-organized cr

cality @16# for the vector Sneppen model. As the case of
original Sneppen model, the dynamics of the vector Snep
model evolves through the process of the coherent acti
after a transient period. The coherent activity means ne
updatings are much more likely to occur among the s
updated their random numbers. Through the avalanche

20
FIG. 6. Snapshots of a flux line for different times~a! in the y

direction and~b! in the z direction for p51.0. The thicker curves
are for 5 Monte Carlo steps later.

FIG. 7. Snapshots of a flux line for different times~a! in the y
direction and~b! in the z direction forp50.5. The thicker data are
for 5 Monte Carlo steps later.
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3818 57BYUNGNAM KAHNG, KWANGHO PARK, AND JINHEE PARK
cess, the active zones extend the boundary with increa
time. Figures 6 and 7, the snapshots of the flux lines, ill
trate this feature. The areas of the active zones in they andz
directions are almost the same forp51, while the area in the
y direction is much larger than the one of thez direction for
p50.5. That is because minimum random numbers are m
likely to be selected in they direction, and updating occur
much more frequently in they direction. However, the linea
sizes of the active zones in they andz directions are almos
same, which implies that the self-organized critical pheno
enon occurs coherently in both directions. Note that the r
dom number at a certain site in one direction can cha
without its position when the position in the other directi
is updated. In other words, the activity of updating or av
lanches in one direction affects the activity in the other
rection, which is the characteristics of the vector Snep
model. Therefore the linear sizes of the active zone in e

FIG. 8. Snapshots of a flux line for different times~a! in the
longitudinal direction and~b! in the transverse direction forp
51.0. The thicker data are for 5 Monte Carlo steps later.

FIG. 9. Snapshots of a flux line for different times~a! in the
longitudinal direction and~b! in the transverse direction forp
50.5. The thicker data are for 5 Monte Carlo steps later.
ng
-

re
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n-
e
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direction are almost the same. We plot the snapshots in
longitudinal and transverse directions in Figs. 8 and 9. In
longitudinal direction, the active zone is localized, and t
dynamics through the associated process@17,18# can be ob-
viously seen, while for the transverse direction, it is not o
vious that the dynamics evolves through the associated
cess, and the active zone is not localized. From this se
the dynamics of the vector Sneppen model in the transv
direction is different from the one for the anisotropic mod
proposed by Maslov and Zhang@15# where the active zone is
localized and propagates anisotropically, but the values
the roughness and dynamic exponents are the same by
dent for the two cases, the vector Sneppen model and
anisotropic KPZ model.

We examine the avalanche size distribution for the vec
Sneppen model. The avalanche size is defined as the nu

FIG. 10. Plot of the avalanche size distribution forp51.0. The
symbol h means the data of they direction, x of thez direction,
and 1 of the total. The data are accumulated over 150 configu
tions. The dotted line with the slope 1.26 was drawn to guide
eyes.

FIG. 11. Plot of the avalanche size distribution forp50.5. The
symbol h means the data of they direction, x of thez direction,
and 1 of the total. The data are accumulated over 200 configu
tions. The dotted line with the slope 1.26 was drawn to guide
eyes.
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57 3819STOCHASTIC MODEL FOR A VORTEX DEPINNING IN . . .
of sites that update their positions through the so-called
sociated process@16–18#. Since updatings occur iny andz
directions, the associated process is counted in three diffe
ways, the processes in each directions separately and the
in both the directions together. Minimum random numb
are also traced in three different ways. Accordingly, the a
lanche size, which is the number of sites that update t
positions during the interval of two successive increas
minimum random numbers, is also counted in three differ
ways. All the avalanche size distributions exhibit power-la
behavior P(s);s2t with the three exponentst5ty , t
5tz , andt5t tot , in the y direction, thez direction, and in
both directions, respectively. The power-law behavior
pears much more clearly for the region of small avalan
sizes in Figs. 10 and 11. For large size region, the data
scattered, which reflects that large sized avalanches o
frequently. The occurrence of large sized avalanches imp
the dynamic exponentz51. We measured the numerical va
ues for the three exponentstx , ty , andt tot for the cases of
p50.5 andp51. All values of the exponents for each ca
ic

d

,

b,
s-

nt
one
s
-
ir
g
t

-
e
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ur

es

are close to 1.26, which is the value of the exponentt for the
avalanche size distribution for the ordinary Sneppen mo
in 111 dimensions.

In summary, we have introduced the vector Snepp
model associated with the dynamics of the flux line
quenched media at the depinning threshold. The roughn
and dynamic exponents are obtained in the longitudinal
transverse directions, which area i'0.63 a''0.5, andzi
5z''1. We have also investigated the avalanche size
tributions where the avalanche sizes are counted in three
ferent ways such that they andz directions update separate
and together. It was obtained that the exponentst for the
avalanche size distribution for the three cases are consis
with the one for the~111!-dimensional Sneppen model.
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Research Fund, Korea Research Foundation, in part by
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